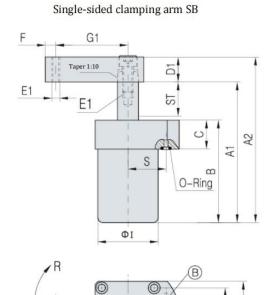


Pressure Range
2-7kg/cm ²



The figure shows the sectional view of the KZG-SB clamping state

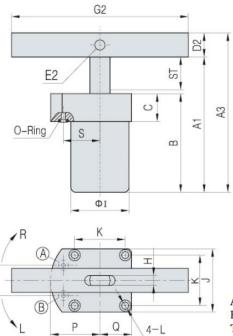
Double-sided clamping arm SBD

Overall Dimension

 \bigcirc

0

Ρ


A

0

Q

0

4

A-clamping hole B-release hole The figure shows the released state

Model Dimension	KZG-SB32	KZG-SB40	KZG-SB50	KZG-SB63	
ST:Swing/clamping	26(11/15)	26(11/15)	30(13/17)	30(13/17)	
A1	108	108	125	125	
A2	(127)	(127)	(150.4)	(150.4)	
A3	127	127	147.2	147.2	
В	78	78	90	90	
С	22	22	25	25	
D1	□19	□19	25.4	25.4	
D2	□19	□19	□22.2	□22.2	
E1	M8*1.25	M8*1.25	M10*1.5	M10*1.5	
E2	Φ8	Φ8	Φ8	Φ8	
F	8	8	10	10	
G1	55	55	70	70	
G2	140	140	160	160	
н	9	9	10		
ФІ	Φ46	Φ55	Φ65	Φ78	
J	52	62	72	85	
к	40	48	57	67	
L	Ф5.6-Ф9∗5.5D	Ф6.8-Ф10.5∗6.5D	Ф6.8-Ф10.5+6.5D	Φ9-Φ14*9.5D	
Р	39	43	49 5		
Q	26	31	36	42.5	
S	29	32	38	46	
Т	24	26	28	38	
O-Ring	P5	P5	P7	P7	

Note: \square indicates square

Performance Table

The clamping force varies depending on the length of the clamping arm (G1) and the air pressure. Please comprehensively consider the clamping arm length (G1), operating air pressure, installation size and other factors to select the appropriate swing clamp cylinder model.

Note: the longer the clamping arm of the swing clamp cylinder, the greater the force acting on the cam mechanism. Do not use a clamping arm longer than the maximum length (Max.G1)

F: clamping force (kN) P: operating air pressure (MPa) G1: clamping arm length (mm)

Interpretation of clamping force:

When KZG-SB32 is used, the supplied air pressure is 0.5MPa and the clamping arm length is 65mm, the clamping force is about 0.22kN.

	Cylinder capacity (kN)					
1	0.60	0.43	0.38			
0.9	0.54	0.38	0.36	0.33		
0.8	0.48	0.36	0.35	0.31		
0.7	0.42	0.32	0.31	0.29		
0.6	0.36	0.27	0.26	0.23		
0.5	0.30	0.22	0.22	0.22		
0.4	0.24	0.14	0.14	0.13		
0.3	0.18	0.12	0.12	0.12		
0.2	0.12	0.04	0.04	0.04		
0.1	0.06	0.02	0.02	0.02		

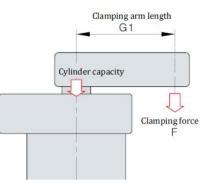
Air pressure (MPa)							
	Cylinder capacity (kN)						
			80	90	100		
1	1.65	1.18					
0.9	1.48	1.00	0.76	0.71			
0.8	1.32	0.88	0.74	0.70	0.73		
0.7	1.15	0.76	0.65	0.63	0.63		
0.6	0.99	0.66	0.55	0.53	0.53		
0.5	0.82	0.57	0.52	0.52	0.44		
0.4	0.66	0.45	0.43	0.39	0.33		
0.3	0.49	0.33	0.31	0.31	0.31		
0.2	0.33	0.22	0.22	0.22	0.22		
0.1	0.16	0.11	0.11	0.09	0.09		

Air pressure (MPa)						
	Cylinder capacity (kN)					
1	1.06	0.58	0.55			
0.9	0.95	0.57	0.54			
0.8	0.84	0.54	0.53	0.53		
0.7	0.74	0.51	0.45	0.45		
0.6	0.63	0.43	0.41	0.39		
0.5	0.53	0.35	0.34	0.31		
0.4	0.42	0.29	0.27	0.25		
0.3	0.32	0.21	0.20	0.20		
0.2	0.21	0.12	0.12	0.11		
0.1	0.11	0.03	0.03	0.03		

Air pressure (MPa)	Cylinder capacity (kN)					
		1	2.80	1.58	1.51	1.41
0.9	2.52	1.53	1.39	1.28	1.37	
0.8	2.24	1.41	1.37	1.24	1.19	
0.7	1.96	1.28	1.27	1.19	1.14	
0.6	1.68	1.09	1.02	1.00	0.93	
0.5	1.40	0.88	0.84	0.78	0.78	
0.4	1.12	0.75	0.67	0.65	0.63	
0.3	0.84	0.54	0.51	0.45	0.44	
0.2	0.56	0.34	0.34	0.34	0.34	
0.1	0.28	0.21	0.15	0.13	0.13	

*Precautions:

1. This figure shows the actual measured values. The clamping force at the clamping point of the clamping arm of the standard cylinder is about 65% of the theoretical value.


2. The clamp arm with a large moment of inertia may not be able to rotate due to the supply air pressure, flow rate, and installation state of the clamp arm.

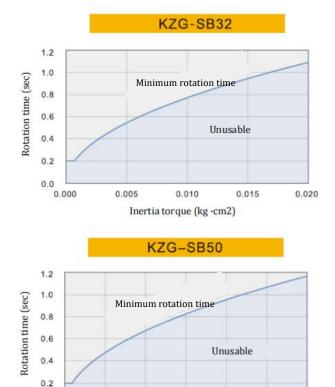
3. This figure shows the relationship between clamping force and supplied air pressure.

4. The clamping force indicates the clamping energy when the clamping arm is clamped at the horizontal position.

5. The clamping force varies with the length of the clamping arm. Use it with the supplied air pressure suitable for the length of the clamp arm.

6. If you need a clamping arm other than our standard, please contact us.

Pneumatic Series

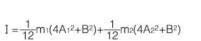

Adjustment of Rotation Speed

Since the camshaft bears the load when rotating at 90°, the action time will be limited according to the length and mass (inertia torque) of the clamping arm.

1. Calculate the moment of inertia according to the length and mass of the clamping arm.

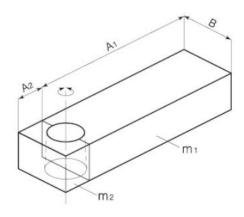
2. In order to make the 90° rotation time within the shortest rotation interval in the figure below, please use the speed control valve to adjust the flow.

The camshaft may be damaged if it is used within the non-use scope.

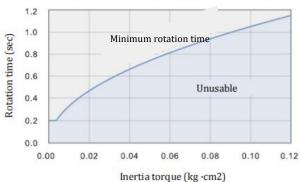

0.08

0.06

Inertia torque (kg ·cm2)


0.10

0.12



Calculation example of inertia torque:

I: Inertia torque (kg • m²) m: Mass (kg)

0.0

0.00

0.02

0.04